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A random lemniscate of high degree

Γ =

{
z ∈ C :

∣∣∣∣p(z)q(z)

∣∣∣∣ = 1

}
(plotted on the Riemann sphere)



Probabilistic perspective on the Erdös lemniscate problem

The Erdös Lemniscate Problem (1958): Find the maximal planar
length of a monic polynomial lemniscate of degree n.

Λ := {z ∈ C : |p(z)| = 1} .

I conjectured extremal is p(z) = zn − 1 (the “Erdös lemniscate”)
I confirmed locally and asymptotically (Fryntov, Nazarov, 2008)

From the probabilistic viewpoint:

Q. What is the average length of Λ?
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Probabilistic perspective on the Erdös lemniscate problem

Sample p from the Kac ensemble.
Q. What is the average length of |Λ|?

Answer (L., Ramachandran): The average length approaches a
constant,

lim
n→∞

E|Λ| = C ≈ 8.3882.

Corollary: “The Erdös lemniscate is an outlier.”



Random rational lemniscates: choosing the ensemble

Randomize the rational lemniscate

Γ =

{
z ∈ C :

∣∣∣∣p(z)q(z)

∣∣∣∣ = 1

}
by randomizing the coefficients of p and q:

p(z) =

n∑
k=0

akz
k, and q(z) =

n∑
k=0

bkz
k,

where ak and bk are independent complex Gaussians:

ak ∼ NC

(
0,

(
n

k

))
, bk ∼ NC

(
0,

(
n

k

))
.



Random samples plotted on the Riemann sphere

Degree n = 100, 200, 300, 400, 500.



Rational lemniscates: three guises

I Complex Analysis: pre-image of unit circle under rational map∣∣∣∣p(z)q(z)

∣∣∣∣ = 1

I Potential Theory: logarithmic equipotential (for point-charges)

log |p(z)| − log |q(z)| = 0

I Algebraic Geometry: special real-algebraic curve

p(x+ iy)p(x+ iy)− q(x+ iy)q(x+ iy) = 0
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Prevalence of lemniscates (pure and applied)

I Approximation theory: Hilbert’s lemniscate theorem

I Conformal mapping: Bell representation of n-connected domains

I Holomorphic dynamics: Mandelbrot and Julia lemniscates

I Numerical analysis: Arnoldi lemniscates

I 2-D shapes: proper lemniscates and conformal welding

I Harmonic mapping: critical sets of complex harmonic polynomials

I Gravitational lensing: critical sets of lensing maps
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Rational lemniscates in gravitational lensing

The lensing potential:

κ|z|2 −
n∑

i=1

mi log |z − zi|

The lensing map (gradient of potential):

z 7→ κz −
n∑

i=1

mi

z̄ − z̄i
.

The critical set (vanishing of the Jacobian) of this map is a rational
lemniscate: {

z ∈ C :

∣∣∣∣∣
n∑

i=1

mi

(z − zi)2

∣∣∣∣∣ = κ

}
.

The caustic: Image of the critical lemniscate under the lensing map.



Rational lemniscates in gravitational lensing

The lensing potential:

κ|z|2 −
n∑

i=1

mi log |z − zi|

The lensing map (gradient of potential):

z 7→ κz −
n∑

i=1

mi

z̄ − z̄i
.

The critical set (vanishing of the Jacobian) of this map is a rational
lemniscate: {

z ∈ C :

∣∣∣∣∣
n∑

i=1

mi

(z − zi)2

∣∣∣∣∣ = κ

}
.

The caustic: Image of the critical lemniscate under the lensing map.



Rational lemniscates in gravitational lensing

The lensing potential:

κ|z|2 −
n∑

i=1

mi log |z − zi|

The lensing map (gradient of potential):

z 7→ κz −
n∑

i=1

mi

z̄ − z̄i
.

The critical set (vanishing of the Jacobian) of this map is a rational
lemniscate: {

z ∈ C :

∣∣∣∣∣
n∑

i=1

mi

(z − zi)2

∣∣∣∣∣ = κ

}
.

The caustic: Image of the critical lemniscate under the lensing map.



Rational lemniscates in gravitational lensing

The lensing potential:

κ|z|2 −
n∑

i=1

mi log |z − zi|

The lensing map (gradient of potential):

z 7→ κz −
n∑

i=1

mi

z̄ − z̄i
.

The critical set (vanishing of the Jacobian) of this map is a rational
lemniscate: {

z ∈ C :

∣∣∣∣∣
n∑

i=1

mi

(z − zi)2

∣∣∣∣∣ = κ

}
.

The caustic: Image of the critical lemniscate under the lensing map.



Caustics and cusps

Petters and Witt (1996) observed a transition to no cusps while tuning
κ.

How many cusps are on a random caustic?



Non-local topology of random real algebraic manifolds

Programmatic problem: Study Hilbert’s sixteenth problem (on the
topology of real algebraic manifolds) from the random viewpoint.

“The random curve is 4% Harnack.”
-P. Sarnak, 2011

Several recent studies address this problem (Nazarov, Sodin, Gayet,
Welschinger, Sarnak, Wigman, Canzani, Beffara, Fyodorov, Lerario, L.).

The crux: the desired features (connected components, arrangements)
are highly non-local.



The spherical length of rational lemniscates

A. Eremenko and W. Hayman (1999) posed and solved a spherical
version of the Erdös lemniscate problem:

Spherical Lemniscate Problem: Find the maximal spherical length of
a rational lemniscate of degree n.

Answer: The maximum is exactly 2πn.

Q. What is the average length of |Γ|?

Answer (Lerario, L., 2016)

E|Γ| = π2

2

√
n.
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Average length and integral geometry

Integral geometry formula for length of Γ:

|Γ|
π

=

∫
SO(3)

|Γ ∩ gS1|dg

Taking expectation on both sides:

E|Γ| = π

∫
SO(3)

E|Γ ∩ gS1|dg.

Rotational invariance =⇒ dg integrand is constant.
Thus, the average length

E|Γ| = πE|Γ ∩ S1|

reduces to a one-dimensional Kac-Rice problem.



Hilbert’s sixteenth problem restricted to lemniscates

Hilbert’s sixteenth problem for real algebraic curves: Study the
number of connected components and classify the possible
arrangements of components.

Specialized to lemniscates, this problem has a complete solution:

For a rational lemniscate of degree n the number of components is at
most n, and any arrangement of up to n components can occur.
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Non-local statistics

I connected components

I arrangements of components (nesting)

I long components (giant components?)

I Morsifications (topological equivalence classes of landscapes)
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The average number of connected components

N(Γ) - number of connected components

c · n ≤ EN(Γ) ≤
(

32−
√
2

28

)
n+O(

√
n),

The upper bound is based on the average number of meridian tangents.

The lower bound uses the barrier method.
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The average number of connected components

The average number of connected components increases linearly in n,
that is, there exist constants c1, c2 > 0 such that

c1n ≤ Eb0(Γ) ≤ c2n.

The proof uses an adaptation of the “barrier method” introduced by F.
Nazarov and M. Sodin (2007): localize the problem and establish a
positive probability (independent of n) of finding a component inside a
disk of radius n−1/2.



Thermodynamic limit: meromorphic lemniscates

Heuristic: rescaling by 1/
√
n and letting n→∞ leads to the lemniscate{
z ∈ C :

∣∣∣∣f(z)

g(z)

∣∣∣∣ = 1

}
determined by the (translation invariant) ratio of two GAFs:

f(z) =

∞∑
k=0

ak
zk√
k!
, ak ∼ NC(0, 1) i.i.d.,

and g is an independent copy of f .



Prevalence of arrangements in the nesting graph

The barrier method can also be used to study the probability of any
fixed arrangement occurring on the scale 1/

√
n.

Given any arrangement A, for every open disk D of radius n−1/2 in the
Riemann sphere there is a positive probability (independent of n) that
Γ ∩D realizes the arrangement A.



Morsifications of |r(z)|

Problem: Study the whole family of level curves

Γt = {z ∈ C : |r(z)| = t}

and the arrangement of singular levels.



Thank you!



Lemniscates in approximation theory

Hilbert’s lemniscate theorem: Polynomial lemniscates are dense in
the space of closed Jordan curves.

Given a closed Jordan curve G and ε > 0 there exists a lemniscate Γ
that contains G in its interior with dist(z,G) < ε for each z ∈ Γ.



Lemniscates in potential theory

For polynomial lemniscate domains {z : |p(z)| > 1} the function

1

n
log |p(z)|

is the harmonic Green’s function with pole at infinity.



Lemniscates in conformal geometry

Bell representation of multiply-connected domains:

Every non-degenerate n-connected planar domain is conformally
equivalent to some lemniscate domain of the form:{

z ∈ C :

∣∣∣∣∣z +

n−1∑
k=1

ak
z − bk

∣∣∣∣∣ < r

}
.

(such domains have algebraic Bergman and Szegö kernels)



Lemniscates in holomorphic dynamics

(Mandelbrot lemniscates.)



Lemniscates in numerical analysis

Arnoldi lemniscates: Iteration scheme used for approximating the
largest eigenvalue of a large matrix.



Lemniscates in 2-D shape compression

D. Mumford and E. Sharon proposed a conformal welding procedure to
“fingerprint” 2-dimensional shapes using diffeomorphisms of the circle.

If the shape is assumed to be a lemniscate the corresponding fingerprint
is the nth root of a finite Blaschke product (P. Ebenfelt, D. Khavinson,
and H.S. Shapiro).



Lemniscates as critical sets of harmonic mappings

The polynomial planar harmonic mapping

z 7→ p(z) + q(z)

has a critical set that is a rational lemnsicate:{
z ∈ C :

∣∣∣∣p′(z)q′(z)

∣∣∣∣ = 1

}
.

So-called “lensing maps” (from gravitational lensing theory)

z 7→ z̄ −
n∑

i=1

mi

z − zi
,

also have critical sets that are rational lemniscates:{
z ∈ C :

∣∣∣∣∣
n∑

i=1

mi

(z − zi)2

∣∣∣∣∣ = 1

}
.



Lemniscates in classical Mathematics

The arclength of Bernoulli’s lemniscate{∣∣z2 − 1
∣∣ = 1

}
is a famous elliptic integral (of the first kind):

2
√

2

∫ 1

0

1√
1− x4

dx ≈ 7.416

The same integral shows up in classical statics (length of an elastica)
and mechanics (period of a pendulum).


