The topology of random lemniscates

Erik Lundberg, Florida Atlantic University
joint work (Proc. London Math. Soc., 2016) with Antonio Lerario
and joint work (in preparation) with Koushik Ramachandran

elundber@fau.edu

Conference on stochastic topology and thermodynamic limits,
ICERM, 2016
A random lemniscate of high degree

\[\Gamma = \left\{ z \in \mathbb{C} : \left| \frac{p(z)}{q(z)} \right| = 1 \right\} \quad \text{(plotted on the Riemann sphere)} \]
The Erdős Lemniscate Problem (1958): Find the maximal planar length of a monic polynomial lemniscate of degree \(n \).

\[
\Lambda := \{ z \in \mathbb{C} : |p(z)| = 1 \}.
\]

- conjectured extremal is \(p(z) = z^n - 1 \) (the “Erdős lemniscate”)
- confirmed locally and asymptotically (Fryntov, Nazarov, 2008)

From the probabilistic viewpoint:

Q. What is the average length of \(\Lambda \)?
The Erdős Lemniscate Problem (1958): Find the maximal planar length of a monic polynomial lemniscate of degree \(n \).

\[
\Lambda := \{ z \in \mathbb{C} : |p(z)| = 1 \}.
\]

- conjectured extremal is \(p(z) = z^n - 1 \) (the “Erdős lemniscate”)
- confirmed locally and asymptotically (Fryntov, Nazarov, 2008)

From the probabilistic viewpoint:

Q. What is the average length of \(\Lambda \)?
The Erdös Lemniscate Problem (1958): Find the maximal planar length of a monic polynomial lemniscate of degree n.

$$\Lambda := \{ z \in \mathbb{C} : |p(z)| = 1 \}.$$

- conjectured extremal is $p(z) = z^n - 1$ (the “Erdös lemniscate”)
- confirmed locally and asymptotically (Fryntov, Nazarov, 2008)

From the probabilistic viewpoint:

Q. What is the average length of Λ?
Probabilistic perspective on the Erdös lemniscate problem

Sample \(p \) from the Kac ensemble.

Q. What is the average length of \(|\Lambda|\)?

Answer (L., Ramachandran): The average length approaches a constant,

\[
\lim_{n \to \infty} \mathbb{E}|\Lambda| = C \approx 8.3882.
\]

Corollary: “The Erdös lemniscate is an outlier.”
Randomize the rational lemniscate

\[\Gamma = \left\{ z \in \mathbb{C} : \left| \frac{p(z)}{q(z)} \right| = 1 \right\} \]

by randomizing the coefficients of \(p \) and \(q \):

\[p(z) = \sum_{k=0}^{n} a_k z^k, \quad \text{and} \quad q(z) = \sum_{k=0}^{n} b_k z^k, \]

where \(a_k \) and \(b_k \) are independent complex Gaussians:

\[a_k \sim \mathcal{N}_\mathbb{C} \left(0, \binom{n}{k} \right), \quad b_k \sim \mathcal{N}_\mathbb{C} \left(0, \binom{n}{k} \right). \]
Random samples plotted on the Riemann sphere

Degree $n = 100, 200, 300, 400, 500$.
Rational lemniscates: three guises

- **Complex Analysis**: pre-image of unit circle under rational map

\[\left| \frac{p(z)}{q(z)} \right| = 1 \]

- **Potential Theory**: logarithmic equipotential (for point-charges)

\[\log |p(z)| - \log |q(z)| = 0 \]

- **Algebraic Geometry**: special real-algebraic curve

\[p(x + iy)p(x + iy) - q(x + iy)q(x + iy) = 0 \]
Rational lemniscates: three guises

- **Complex Analysis:** pre-image of unit circle under rational map

\[\left| \frac{p(z)}{q(z)} \right| = 1 \]

- **Potential Theory:** logarithmic equipotential (for point-charges)

\[\log |p(z)| - \log |q(z)| = 0 \]

- **Algebraic Geometry:** special real-algebraic curve

\[p(x + iy)\overline{p(x + iy)} - q(x + iy)\overline{q(x + iy)} = 0 \]
Rational lemniscates: three guises

- **Complex Analysis**: pre-image of unit circle under rational map
 \[
 \left| \frac{p(z)}{q(z)} \right| = 1
 \]

- **Potential Theory**: logarithmic equipotential (for point-charges)
 \[
 \log |p(z)| - \log |q(z)| = 0
 \]

- **Algebraic Geometry**: special real-algebraic curve
 \[
 p(x + iy)\overline{p(x + iy)} - q(x + iy)\overline{q(x + iy)} = 0
 \]
Prevalence of lemniscates (pure and applied)

- **Approximation theory**: Hilbert’s lemniscate theorem
- **Conformal mapping**: Bell representation of n-connected domains
- **Holomorphic dynamics**: Mandelbrot and Julia lemniscates
- **Numerical analysis**: Arnoldi lemniscates
- **2-D shapes**: proper lemniscates and conformal welding
- **Harmonic mapping**: critical sets of complex harmonic polynomials
- **Gravitational lensing**: critical sets of lensing maps
Prevalence of lemniscates (pure and applied)

- **Approximation theory**: Hilbert’s lemniscate theorem
- **Conformal mapping**: Bell representation of n-connected domains
- **Holomorphic dynamics**: Mandelbrot and Julia lemniscates
- **Numerical analysis**: Arnoldi lemniscates
- **2-D shapes**: proper lemniscates and conformal welding
- **Harmonic mapping**: critical sets of complex harmonic polynomials
- **Gravitational lensing**: critical sets of lensing maps
Prevalence of lemniscates (pure and applied)

- **Approximation theory:** Hilbert’s lemniscate theorem
- **Conformal mapping:** Bell representation of \(n \)-connected domains
- **Holomorphic dynamics:** Mandelbrot and Julia lemniscates
- **Numerical analysis:** Arnoldi lemniscates
- **2-D shapes:** proper lemniscates and conformal welding
- **Harmonic mapping:** critical sets of complex harmonic polynomials
- **Gravitational lensing:** critical sets of lensing maps
Prevalence of lemniscates (pure and applied)

- **Approximation theory:** Hilbert’s lemniscate theorem
- **Conformal mapping:** Bell representation of n-connected domains
- **Holomorphic dynamics:** Mandelbrot and Julia lemniscates
- **Numerical analysis:** Arnoldi lemniscates
- **2-D shapes:** proper lemniscates and conformal welding
- **Harmonic mapping:** critical sets of complex harmonic polynomials
- **Gravitational lensing:** critical sets of lensing maps
Prevalence of lemniscates (pure and applied)

- **Approximation theory:** Hilbert’s lemniscate theorem
- **Conformal mapping:** Bell representation of n-connected domains
- **Holomorphic dynamics:** Mandelbrot and Julia lemniscates
- **Numerical analysis:** Arnoldi lemniscates
- **2-D shapes:** proper lemniscates and conformal welding
- **Harmonic mapping:** critical sets of complex harmonic polynomials
- **Gravitational lensing:** critical sets of lensing maps
Prevalence of lemniscates (pure and applied)

- **Approximation theory:** Hilbert’s lemniscate theorem
- **Conformal mapping:** Bell representation of n-connected domains
- **Holomorphic dynamics:** Mandelbrot and Julia lemniscates
- **Numerical analysis:** Arnoldi lemniscates
- **2-D shapes:** proper lemniscates and conformal welding
- **Harmonic mapping:** critical sets of complex harmonic polynomials
- **Gravitational lensing:** critical sets of lensing maps
Prevalence of lemniscates (pure and applied)

- **Approximation theory**: Hilbert’s lemniscate theorem
- **Conformal mapping**: Bell representation of n-connected domains
- **Holomorphic dynamics**: Mandelbrot and Julia lemniscates
- **Numerical analysis**: Arnoldi lemniscates
- **2-D shapes**: proper lemniscates and conformal welding
- **Harmonic mapping**: critical sets of complex harmonic polynomials
- **Gravitational lensing**: critical sets of lensing maps
The lensing potential:

\[\kappa |z|^2 - \sum_{i=1}^{n} m_i \log |z - z_i| \]

The lensing map (gradient of potential):

\[z \mapsto \kappa z - \sum_{i=1}^{n} \frac{m_i}{\bar{z} - \bar{z}_i} . \]

The critical set (vanishing of the Jacobian) of this map is a rational lemniscate:

\[\left\{ z \in \mathbb{C} : \left| \sum_{i=1}^{n} \frac{m_i}{(z - z_i)^2} \right| = \kappa \right\} . \]

The caustic: Image of the critical lemniscate under the lensing map.
The lensing potential:

\[\kappa |z|^2 - \sum_{i=1}^{n} m_i \log |z - z_i| \]

The lensing map (gradient of potential):

\[z \mapsto \kappa z - \sum_{i=1}^{n} \frac{m_i}{\bar{z} - \bar{z}_i} . \]

The critical set (vanishing of the Jacobian) of this map is a rational lemniscate:

\[\left\{ z \in \mathbb{C} : \left| \sum_{i=1}^{n} \frac{m_i}{(z - z_i)^2} \right| = \kappa \right\} . \]

The caustic: Image of the critical lemniscate under the lensing map.
The lensing potential:

\[\kappa |z|^2 - \sum_{i=1}^{n} m_i \log |z - z_i| \]

The lensing map (gradient of potential):

\[z \mapsto \kappa z - \sum_{i=1}^{n} \frac{m_i}{\bar{z} - \bar{z}_i}. \]

The critical set (vanishing of the Jacobian) of this map is a rational lemniscate:

\[\left\{ z \in \mathbb{C} : \left| \sum_{i=1}^{n} m_i \over (z - z_i)^2 \right| = \kappa \right\}. \]

The caustic: Image of the critical lemniscate under the lensing map.
Rational lemniscates in gravitational lensing

The lensing potential:

\[\kappa |z|^2 - \sum_{i=1}^{n} m_i \log |z - z_i| \]

The lensing map (gradient of potential):

\[z \mapsto \kappa z - \sum_{i=1}^{n} \frac{m_i}{\bar{z} - \bar{z}_i}. \]

The critical set (vanishing of the Jacobian) of this map is a rational lemniscate:

\[\left\{ z \in \mathbb{C} : \left| \sum_{i=1}^{n} \frac{m_i}{(z - z_i)^2} \right| = \kappa \right\}. \]

The caustic: Image of the critical lemniscate under the lensing map.
Petters and Witt (1996) observed a transition to no cusps while tuning κ.

How many cusps are on a random caustic?
Programmatic problem: Study Hilbert’s sixteenth problem (on the topology of real algebraic manifolds) from the random viewpoint.

“The random curve is 4% Harnack.”
-P. Sarnak, 2011

Several recent studies address this problem (Nazarov, Sodin, Gayet, Welschinger, Sarnak, Wigman, Canzani, Beffara, Fyodorov, Lerario, L.).

The crux: the desired features (connected components, arrangements) are highly non-local.
A. Eremenko and W. Hayman (1999) posed and solved a spherical version of the Erdös lemniscate problem:

Spherical Lemniscate Problem: Find the maximal spherical length of a rational lemniscate of degree n.

Answer: The maximum is exactly $2 \pi n$.

Q. What is the average length of $|\Gamma|$?

Answer (Lerario, L., 2016)

$$E|\Gamma| = \frac{\pi^2}{2} \sqrt{n}.$$
A. Eremenko and W. Hayman (1999) posed and solved a spherical version of the Erdős lemniscate problem:

Spherical Lemniscate Problem: Find the maximal spherical length of a rational lemniscate of degree n.

Answer: The maximum is exactly $2\pi n$.

Q. What is the average length of $|\Gamma|$?

Answer (Lerario, L., 2016)

$$\mathbb{E}|\Gamma| = \frac{\pi^2}{2} \sqrt{n}.$$
A. Eremenko and W. Hayman (1999) posed and solved a spherical version of the Erdös lemniscate problem:

Spherical Lemniscate Problem: Find the maximal spherical length of a rational lemniscate of degree n.

Answer: The maximum is exactly $2\pi n$.

Q. **What is the average length of $|\Gamma|$?**

Answer (Lerario, L., 2016)

\[
\mathbb{E}|\Gamma| = \frac{\pi^2}{2} \sqrt{n}.
\]
A. Eremenko and W. Hayman (1999) posed and solved a spherical version of the Erdős lemniscate problem:

Spherical Lemniscate Problem: Find the maximal spherical length of a rational lemniscate of degree n.

Answer: The maximum is exactly $2\pi n$.

Q. What is the average length of $|\Gamma|$?

Answer (Lerario, L., 2016)

$$\mathbb{E}|\Gamma| = \frac{\pi^2}{2} \sqrt{n}.$$
Integral geometry formula for length of Γ:

$$\frac{|\Gamma|}{\pi} = \int_{SO(3)} |\Gamma \cap gS^1| \, dg$$

Taking expectation on both sides:

$$E|\Gamma| = \pi \int_{SO(3)} E|\Gamma \cap gS^1| \, dg.$$

Rotational invariance $\implies \, dg$ integrand is constant. Thus, the average length

$$E|\Gamma| = \pi E|\Gamma \cap S^1|$$

reduces to a one-dimensional Kac-Rice problem.
Hilbert’s sixteenth problem for real algebraic curves: Study the number of connected components and classify the possible arrangements of components.

Specialized to lemniscates, this problem has a complete solution:

For a rational lemniscate of degree n the number of components is at most n, and any arrangement of up to n components can occur.
Hilbert’s sixteenth problem restricted to lemniscates

Hilbert’s sixteenth problem for real algebraic curves: Study the number of connected components and classify the possible arrangements of components.

Specialized to lemniscates, this problem has a complete solution:

For a rational lemniscate of degree n the number of components is at most n, and any arrangement of up to n components can occur.
Non-local statistics

- connected components
- arrangements of components (nesting)
- long components (giant components?)
- Morsifications (topological equivalence classes of landscapes)
Non-local statistics

- connected components
- arrangements of components (nesting)
- long components (giant components?)
- Morsifications (topological equivalence classes of landscapes)
Non-local statistics

- connected components
- arrangements of components (nesting)
- long components (giant components?)
- Morsifications (topological equivalence classes of landscapes)
Non-local statistics

- connected components
- arrangements of components (nesting)
- long components (giant components?)
- Morsifications (topological equivalence classes of landscapes)
The average number of connected components

\[N(\Gamma) - \text{number of connected components} \]

\[c \cdot n \leq \mathbb{E}N(\Gamma) \leq \left(\frac{32 - \sqrt{2}}{28} \right) n + O(\sqrt{n}), \]

The upper bound is based on the average number of meridian tangents.

The lower bound uses the barrier method.
The average number of connected components

\(N(\Gamma) \) - number of connected components

\[c \cdot n \leq \mathbb{E}N(\Gamma) \leq \left(\frac{32-\sqrt{2}}{28} \right) n + O(\sqrt{n}), \]

The upper bound is based on the average number of meridian tangents.

The lower bound uses the barrier method.
The average number of connected components

\[N(\Gamma) - \text{number of connected components} \]

\[c \cdot n \leq \mathbb{E} N(\Gamma) \leq \left(\frac{32 - \sqrt{2}}{28} \right) n + O(\sqrt{n}), \]

The upper bound is based on the average number of meridian tangents.

The lower bound uses the barrier method.
The average number of connected components increases linearly in n, that is, there exist constants $c_1, c_2 > 0$ such that

$$c_1 n \leq \mathbb{E} b_0(\Gamma) \leq c_2 n.$$

The proof uses an adaptation of the “barrier method” introduced by F. Nazarov and M. Sodin (2007): localize the problem and establish a positive probability (independent of n) of finding a component inside a disk of radius $n^{-1/2}$.
Thermodynamic limit: meromorphic lemniscates

Heuristic: rescaling by $1/\sqrt{n}$ and letting $n \to \infty$ leads to the lemniscate

$$\left\{ z \in \mathbb{C} : \left| \frac{f(z)}{g(z)} \right| = 1 \right\}$$

determined by the (translation invariant) ratio of two GAFs:

$$f(z) = \sum_{k=0}^{\infty} a_k \frac{z^k}{\sqrt{k!}}, \quad a_k \sim N_C(0, 1) \quad \text{i.i.d.},$$

and g is an independent copy of f.
Prevalence of arrangements in the nesting graph

The barrier method can also be used to study the probability of any fixed arrangement occurring on the scale $1/\sqrt{n}$.

Given any arrangement A, for every open disk D of radius $n^{-1/2}$ in the Riemann sphere there is a positive probability (independent of n) that $\Gamma \cap D$ realizes the arrangement A.
Morsifications of $|r(z)|$

Problem: Study the whole family of level curves

$$\Gamma_t = \{ z \in \mathbb{C} : |r(z)| = t \}$$

and the arrangement of singular levels.
Thank you!
Hilbert’s lemniscate theorem: Polynomial lemniscates are dense in the space of closed Jordan curves.

Given a closed Jordan curve \(G \) and \(\varepsilon > 0 \) there exists a lemniscate \(\Gamma \) that contains \(G \) in its interior with \(\text{dist}(z, G) < \varepsilon \) for each \(z \in \Gamma \).
Lemniscates in potential theory

For polynomial lemniscate domains \(\{ z : |p(z)| > 1 \} \) the function

\[
\frac{1}{n} \log |p(z)|
\]

is the harmonic Green’s function with pole at infinity.
Bell representation of multiply-connected domains:

Every non-degenerate n-connected planar domain is conformally equivalent to some lemniscate domain of the form:

$$\left\{ z \in \mathbb{C} : \left| z + \sum_{k=1}^{n-1} \frac{a_k}{|z - b_k|} \right| < r \right\}.$$

(such domains have algebraic Bergman and Szegö kernels)
Lemniscates in holomorphic dynamics

(Mandelbrot lemniscates.)
Lemniscates in numerical analysis

Arnoldi lemniscates: Iteration scheme used for approximating the largest eigenvalue of a large matrix.
D. Mumford and E. Sharon proposed a conformal welding procedure to “fingerprint” 2-dimensional shapes using diffeomorphisms of the circle.

If the shape is assumed to be a lemniscate the corresponding fingerprint is the nth root of a finite Blaschke product (P. Ebenfelt, D. Khavinson, and H.S. Shapiro).
The polynomial planar harmonic mapping

\[z \mapsto p(z) + \overline{q(z)} \]

has a critical set that is a rational lemniscate:

\[\left\{ z \in \mathbb{C} : \left| \frac{p'(z)}{q'(z)} \right| = 1 \right\}. \]

So-called “lensing maps” (from gravitational lensing theory)

\[z \mapsto \bar{z} - \sum_{i=1}^{n} \frac{m_i}{z - z_i}, \]

also have critical sets that are rational lemniscates:

\[\left\{ z \in \mathbb{C} : \left| \sum_{i=1}^{n} \frac{m_i}{(z - z_i)^2} \right| = 1 \right\}. \]
Lemniscates in classical Mathematics

The arclength of Bernoulli’s lemniscate

\[\{ |z^2 - 1| = 1 \} \]

is a famous elliptic integral (of the first kind):

\[
2\sqrt{2} \int_{0}^{1} \frac{1}{\sqrt{1 - x^4}} \, dx \approx 7.416
\]

The same integral shows up in classical statics (length of an elastica) and mechanics (period of a pendulum).